Simulating Water-Use Efficiency of Piceacrassi folia Forest under Representative Concentration Pathway Scenarios in the Qilian Mountains of Northwest China
نویسندگان
چکیده
The current study used the Biome-Bio Geochemical Cycle (Biome-BGC) model to simulate water-use efficiency (WUE) of Piceacrassi folia (P. crassifolia) forest under four representative concentration pathway (RCP) scenarios, and investigated the responses of forest WUE to different combinations of climatic changes and CO2 concentrations in the Qilian Mountains of Northwest China. The model was validated by comparing simulated forest net primary productivity and transpiration under current climatic condition with independent field-measured data. Subsequently, the model was used to predict P. crassi folia forest WUE response to different climatic and CO2 change scenarios. Results showed that (1) increases in temperature, precipitation and atmospheric CO2 concentrations led to associated increases in WUE (ranging from 54% to 66% above the reference climate); (2) effect of CO2 concentration (increased WUE from 36% to 42.3%) was more significant than that of climate change (increased WUE from 2.4% to 15%); and (3) forest WUE response to future global change was more intense at high elevations than at low ones, with CO2 concentration being the main factor that controlled forest WUE variation. These results provide valuable insight to help understand how these forest types might respond to future changes in climate and atmospheric CO2 concentration.
منابع مشابه
Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China
Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qin...
متن کاملMillennium tree‐ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China
Global mean surface temperatures have risen by 0.85 ± 0.20 °C, over the period 1880–2012, and projections of future climate change suggest further global warming (IPCC 2013). Warming of the global climate is expected to be accompanied by increase of global precipitation, as warmer air is able to hold more water vapour (Wentz et al. 2007). However, precipitation changes are expected to differ fr...
متن کاملThe Source, Flow Rates, and Hydrochemical Evolution of Groundwater in an Alluvial Fan of Qilian Mountain, Northwest China
Major ions and selected environmental tracers (D, 18O, 3H and chlorofluorocarbons (CFCs)) were employed to determine the source, flow rates, and hydrochemical evolution of groundwater in an alluvial fan along the front of the Qilian Mountains, which serves as an important groundwater reservoir in northwest China. Temporal and spatial variations in ion concentrations were limited near the upper ...
متن کاملSimulating Optimal Scenarios of Urbanization Impacts on Flow Hydro-graph and Sediment Concentration in Ziarat Watershed, Iran
Extended abstract 1- INTRODUCTION Landuse change due to human activities is one of the important issues in regional planning. Considering the advantages and capabilities of the distributed hydrological models, they are appropriate for the survey of landuse changes as well as their quantitative estimates. Land evaluation methods are used to determine the compatibility of the land according to ...
متن کاملClimate change effects on wheat yield and water use in oasis cropland
Agriculture of the inland arid region in Xinjiang depends on irrigation, which forms oasis of Northwest China. The production and water use of wheat, a dominant crop there, is significantly affected by undergoing climate variability and change. The objective of this study is to quantify inter-annual variability of wheat yield and water use from 1955 to 2006. The farming systems model APSIM (Agr...
متن کامل